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Abstract-The heat transfer correlation, minimum temperature, and mean temperature are presented for 
pseudosteady-state natural convection heat transfer to a fluid inside a vertical cylinder. The SIMPLER 
numerical method was used for calculation in the range 0.25 < H/D < 2, Ra < lo’, and Pr = 7. This range 
includes conduction to weak turbulence. The overall heat transfer for the convection-dominated range was 
found to be correlated by 

Nu = 0.519Ra0~255 

where the temperaturedifference for both theNusselt and Rayleighnumbers was thecenter temperatureminus 
the inside wall temperature. Correlations using other temperature differences are also presented and provide a 
method for prediction ofthe mean temperature, minimum temperature, or center temperature by knowing any 

one of them. 

INTRODUCTION 

NATURAL convection in enclosures commonly occurs 
in technological applications. This phenomenon plays 
an important role in such diverse applications as 
cooling of cans of beverages, air conditioning of 
buildings, design of electronic components, emergency 
cooling of nuclear reactors, temperature stratification 
in cryogenic fuel tanks, and cooling (heating) chemical 
reactors generating (consuming) heat uniformity, to 
name but a few. In these cases, the fluid is driven by 
density variations in a body-force field, and the flow 
patterns depend critically on the applied heating 
conditions and the boundaries. These systems are 
governed by the Navier-Stokes equations, but, due to 
the complexity of the equations and the coupling of the 
dependent variables, general analytical solutions are 
still not possible. Most previous research efforts have 
been based on experimental work and, more recently, 
on numerical approaches. The purpose ofthis work was 
to investigate natural convection inside a vertical 
cylinder where the wall temperature was increasing at 
the same rate as the interior temperatures-the 
pseudosteady-state condition. The results also apply to 
the case of uniform heat generation at steady state. 

Previous studies include a step change in the wall 
temperature of cylinders with H/D ratios from 0.75 to 
2.0 by Evans and Stefany [l]. For Rayleigh numbers 
(based on initial temperature difference and diameter) 
from 6 x lo5 to 6 x log, the heat transfer was correlated 
by Nu = 0.55Ra O.“. Natural convection heat transfer 
of a uniformly heat-generating fluid is important in 
reactor design. While this system is difficult to achieve 
experimentally, it can be numerically simulated by an 
uniform internal heat source or by pseudosteady state. 
In Murgatroyd and Watson’s experiments [2], a 
solution of HCl(3 < Pr < 9) was heated by passing an 
alternating current between two copper electrodes, one 

at each end of the cylinder. Cooling water around the 
outside of the cylinder was used to keep the wall 
temperature constant and uniform. Modified Rayleigh 
numbers (based on rate of heat input per unit volume) 
from 2 x lo3 to 3 x lo6 were used (corresponding to 
laminar flow). Pseudosteady-state techniques were 
used by Lin and Akins [3] to study the flow pattern and 
overall heat transfer coefficients in cubical enclosures. 
Several complicated flow patterns were observed 
photographically for the unsteady state and the 
pseudosteady-state conditions. 

Efforts to solve pseudosteady-state (or uniform heat 
generation) natural convection inside vertical cylinders 
with moderate height-to-diameter ratios using nu- 
merical methods have received limited attention. 
Seemingly there has been no previous work using 
primitive variables to solve this problem. The only 
solution available was presented by Kee et al. [4], who 
used the streamfunction-vorticity method to formulate 
the uniform heat generating problem. An instrumented 
cylinder containing radioactive tritium gas was used to 
demonstrate experimental and analytical agreement. 
Their work provides a valuable comparison for the low 
Rayleigh number results of this work. 

Compared with experimental investigations, the 
proper numerical method can offer advantages of low 
cost, high speed, the ability to provide complete 
information, and ease of application to different 
conditions. Numerical results require the solution of 
the Navier-Stokes and energy equations, which are 
highly nonlinear and inseparably connected. For the 
case of natural convection, the temperature difference is 
the driving force for flow, therefore both fields are 
coupled and must be calculated simultaneously. This 
substantially increases the difficulty of calculation 
compared to forced convection problems where the 
flow field is usually determined prior to the temperature 
field. In addition to the complexity of the equations, a 
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NOMENCLATURE 

A area 
C, heat capacity 
D diameter 
f H/D function, equation (10) 

9 acceleration of gravity 
Gr Grashof number 
Gr’ modified Grashof number 
h heat transfer coefficient 
H height 
k thermal conductivity 
L characteristic length, D f 
n normal vector 
Nu Nusselt number based on L 

P actual pressure 
p,, hydrostatic pressure, a -p,,gz 

P P+Posz 
Pr Prandtl number 

4 heat flux 

4” volumetric heat effect 

Qv qvlW,ATL2) 
r radial position 
Ra Rayleigh number based on L 
t time 
T temperature 

v velocity 
Z axial position. 

Greek symbols 
thermal diffusivity 

; coefficient of thermal expansion 
p dynamic viscosity 
V kinematic viscosity 
7l reference pressure 

P density 
V2 two-dimensional Laplacian operator. 

Subscripts 
C center 
min minimum 
0 at initial temperature 
r radial-component property 
W wall 
x local variable 
z axial-component property. 

Superscripts 
l, based on rate of temperature change 
* based on diameter. 

wide range of parameters must also be dealt with. In 
usual applications, the Prandtl number covers about 
five orders of the magnitude and the Rayleigh number 
may span 10 orders of the magnitude. These facts make 
the calculation algorithm and correlation method not 
only difficult, but parameter dependent. The comp- 
lexity of natural convection problems has made them a 
challenging task for modern numerical techniques. 

FORMULATION OF THE PROBLEM 

The system studied consisted of a fluid completely_ 
enclosed in a vertical cylinder. Initially the entire system 
was motionless and at a uniform temperature. 
Suddenly, the temperature of the cylinder walls (top, 
bottom and side) underwent a step change of size AT. 
A transient period started, during which the fluid 
temperature and velocity changed with time due to heat 
conduction through walls and natural convection 
inside the cylinder. Following the step change, the wall 
temperature was dynamically adjusted to maintain a 
constant wall-to-center temperature difference equi- 
valent to the step change.Calculations were carried out 
through the transient period until pseudosteady state 
was reached, at which time the relative temperature of 
any two points in the fluid was time invariant. 

To formulate this problem, it was assumed that : (1) 
all variables were &direction independent; (2) the fluid 
was viscous and incompressible; (3) ah dissipation 
terms were negligible; and (4) all physical properties 

were constant except for the density in buoyancy term, 
which was expressed as a linear function of temperature 
(the Bossinesq assumption). In equation form 

P = POD -B(T- T,II. 

If we define pressure as 

P = P-(Pil-4 

(1) 

= P+Posz (2) 

where p is the actual pressure at any point in the fluid, ph 
is the hydrostatic pressure of a column of fluid at the 
reference temperature, K is a reference pressure at the 
bottom ofthe cylinder, then P is a pressure term without 
hydrostatic influence. The governing equations can be 
expressed in the following dimensionless form? : 

Wb) ah) 
ar +az= 0 

au, t+vr~+$3_~+v2V’_Ur 
r2 

(4) 

au, 
,+vr$+“+- -g+V20Z+GrT (5) 

aT - 
at 

(6) 

t To make the equations dimensionless the following 
characteristic variables are used, D for length, D2/v for time, 
v/D for velocity, p(v/D)’ for pressure, and the dimensionless 
temperature is defined by (T- TO)/AT. 



Pseudosteady-state convection inside a vertical cylinder 303 

The dimensionless initial conditions which apply in this 
case are 

v, = v, = 0 when t = 0, T =0 (7) 

and the dimensionless boundary conditions are 

v, = vz = 0, T = T,+ 1 at solid boundaries, 

av ‘aT 
V, = -? = - = 0 at the axial center. ar ar 

The distribution of the local heat flux may be 
evaluated from Fourier’s law, q = -k(aT/an). The 
local and the overall Nusselt numbers (based on 
diameter) can be expressed as 

Nu: = 7 = - E (local) 

Nu* =f 
s 

Nu: dA (overall) 
A 

(9) 

(10) 

where II and A are also dimensionless. 
In defining the Rayleigh and Nusselt numbers, 

several characteristic lengths were evaluated. The 
following gave the best correlation : 

L=6x 
volume 

surface area 
=D[l~;$/;J=D/ (11) 

This choice of L also had the following advantages : (1) 
L = D when D = H; (2) L is characteristic of both D 
and H-when their magnitude is close, more weight is 
put on the smaller of the two, which is intuitively 
realistic ; (3) L depends only on the smaller dimension 
as one becomes very large compared to the other. 
The Rayleigh number and the Nusselt number using L 
and D can be related as 

Nu = fNu* (12) 

Ra = f 3Ra*. (13) 

The overall Nusselt number can also be calculated by 
the rate of temperature change at any position (usually 
the center point) when the system is at pseudosteady 
state 

(14) 

At any time, Nu* depends only on the temperature field 
and its determination involves the entire calculation 
scheme as well as estimation of the temperature 
gradients at the walls. On the other hand, Nu” depends 
only on the dynamic temperature of any point. 
Therefore, the calculation of Nu* and Nu” are 
somewhat independent and their difference serves to 
check the precision of the calculations. Constancy of 
Nu” indicates that pseudosteady state has been 
achieved. 

In general, a modified Grashof number based on the 
heat effect 

is used as a parameter in the uniform heat generation 
systems instead of the Grashof number, Gt, based on a 
characteristic temperature difference. These two 
systems are related by 

Gr’ = QvRa (16) 

where QV is the dimensionless heat effect. 

Numerical method 
The equations above, with the associated initial and 

boundary conditions, provide a complete mathema- 
tical description of the problem. These equations were 
solved by the Semi-Implicit Method for Pressure- 
Linked Equations, Revised (SIMPLER)algorithm [S]. 
The essence of this algorithm was to successively 
correct the pressure field so as to satisfy the boundary 
conditions and the continuity equation with the 
velocities calculated via the momentum equations. 
Recently, this method has become a powerful tool for 
solving fluid flow problems, and numerous papers 
based on the method have been published. However, 
Pollard and Thyagaraja [6] pointed out that this 
method appears to encounter convergence difficulties 
when the momentum equations are driven by body 
forces, even if no physical instability occurs. In the 
numerical calculations of this work, difficulties with 
convergence were also experienced. A control 
algorithm was set up such that the number of iterations 
required for each equation and rate of primitive 
variable change were used to modify dynamically the 
convergence criteria of each equation, the time step 
sizes, and (more importantly) the under-relaxation 
coefficients. For each run, the calculation proceeded by 
marching through transient steps until pseudosteady 
state was achieved, which was indicated by no change in 
any temperature differences, no change in velocities, 
and no change in mass flux for each control volume. 

The calculation parameters were Rayleigh number 
and the height-to-diameter ratio. Cases with the 
Rayleigh number up to 10’ and H/D of0.125,0.25,0.5,1 
and 2 were calculated. A Prandtl number of 7 was used, 
corresponding to water, however, the influence of the 
Prandtl number was not expected to be significant since 
it is generally accepted that steady-state natural 
convection can be described by geometric parameters 
and the Rayleigh number alone when the Prandtl 
number is greater than 5. To further support this, two 
cases (with the Prandtl number equal to 7 and 180, 
Ra = 10’ and H/D = 1) were calculated for compari- 
son, and the resulting temperature profiles coincided 
exactly. Finite-difference grids of 10 x 10, 10 x 28 and 
19 x 19 were employed. Considerably finer grids were 
applied to the regions close to the boundaries to reduce 
errors due to steep gradients in those areas, and to 
increase the accuracy of heat flux calculation. The 
results were determined to be grid independent by 
comparisons with solutions obtained using different 
grids. 
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RESULTS 

Heat transfer 
Figure 1 shows the relationship of the overall Nusselt 

number and the Rayleigh number. In defining the 
Nusselt number and the Rayleigh number, a 
characteristic temperature difference of (T. - T,) was 
used since the center temperature is easy to measure 
practically. There are, of course, other characteristic 
temperature differences that could be used. For 
example, the volumetric mean temperature, although 
usually difficult to determine, is an indication of the 
entire temperature field and the difference between 
it and the wall temperature should be a good 
characteristic temperature difference of the whole 
system. For some applications, such as the design 
of catalytic packed bed reactors, the extreme tempera- 
ture and its location is important. As a result, a 
characteristic temperature difference based on the 
minimum (or maximum) temperature might be useful. 
To provide information of these different temperatures, 
(T,-- T,), (T,- T,,,,), and (I”- I’,,3 were used to 
define the Rayleigh number in the correlation with the 
Nusselt number. 

The low Rayleigh number region of Fig. 1 shows 
horizontal lines for various H/D ratios, indicating 
conduction-dominated heat transfer. When conduc- 
tion is the only significant mode, the Nusselt number 
depends only on the HID ratio. For higher Rayleigh 
numbers, the results fall on straight lines with slopes of 
approx. l/4. This suggests a correlation of the form 
Nu = a - Rab for each H/D ratio. Table 1 lists the values 
of a, b, and the correlation coefficients for H/D ratios of 
l/4, l/2, 1 and 2, and for Rayleigh numbers based on 
different characteristic temperature differences. 
However, only (T,- T,) was used in defining the 
Nusselt number for all cases since the selection of its 
temperature difference is somewhat arbitrary and a 
reference is necessary for comparison purposes. Since 
the data for all H/D ratios were so nearly the same, one 
overall correlation was made and this is shown at the 
bottom of Table 1. Table 1 can be used to calculate the 
center temperature, volumetric mean temperature, and 

FIG. 1. Heat transfer correlation for vertical cylinders: 
AT = (T,-T,). 

Table 1. Convective heat transfer correlation coefficients 
forNu=a*Rab 

Temperature Correction 
difference coefficient 

HP in Ra a b R2 

114 wall-mean 0.923 0.215 0.913 
wall-center 0.654 0.237 0.892 
wall-minimum 0.722 0.225 0.905 

l/2 wall-mean 0.706 0.235 0.999 
wall-center 0.514 0.254 0.999 
wall-minimum 0.519 0.249 0.999 

1 wall-mean 0.682 0.243 0.992 
wall-center 0.517 0.259 0.990 
wall -minimum 0.489 0.258 0.994 

2 wall-mean 0.564 0.254 0.995 
wall-center 0.371 0.281 0.988 
wall-minimum 0.381 0.272 0.993 

Overall wall-mean 0.727 0.234 0.971 
wall-center 0.519 0.255 0.963 
wall-minimum 0.536 0.248 0.967 

the minimum temperature by knowing any one of them. 
Note that the correlations for the three temperature 
difference definitions are very similar as far as the ability 
to fit the data is concerned. The coefficients using (7’,‘, 
- T,,,,) are slightly better than others in all cases of 
H/D ratios, and the worst correlation is observed for 
HID = 1.4. For H/D = l/4 and for Ra between 8 x lo4 
and 2 x 10’ there were two solutions at each Rayleigh 
number. As HID decreases, the importance of the heat 
transfer through the sidewalls is also decreased 
compared to that through the top and bottom, and the 
problem evolves into that for horizontal plates. The two 
solutions were considerably different in detail (i.e. flow 
patterns, etc.) which showed up as a 10-20x difference 
in the Nusselt number. The double solutions are 
believed to be the transition between the two heat 
transfer processes ; therefore, extrapolation of these 
results to smaller H/D ratios needs to be handled with 
care. 

It is worthwhile noting that the selection of the 
characteristic length is critical in making the overall 
correlation possible. Although the slopes will be the 
same, other characteristic lengths will result in different 
intercepts. The characteristic length used here provided 
the best overall correlation. 

Figure 2 shows the Nusselt number for conduction 
cases and the minimum Rayleigh number for which the 
overall coefficients in Table 1 may be used. The 
minimum of the two curves in Fig. 2 occurs at H/D - 1 
which is expected since the surface area/volume ratio 
is a minimum when H/D = 1. When we speak of 
‘conduction’, it is not our intention to relate these 
results to the onset of flow, since by the SIMPLER 
method the velocity field is nonzero even for an 
infinitesimal driving force. It is better to think of this as 
the region where heat transfer by conduction is 
significantly larger than that by convection. 
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H/D 
FIG. 2. Nusselt number for conduction and limiting Rayleigb 

number. 

Minimum temperature 
To make the comparisons possible, temperatures are 

normalized to be zero at the center and unity at the wall. 
Before any convection effects are significant, the mini- 
mum temperature inside the cylinder (denoted by Tm,,,) 
is zero and is at the center of the cylinder. Figure 3 
presents the locations of Tmin as a function of Rayleigh 
number of H/D ratios of l/2, 1 and 2. The ordinate is 
z/(H/D), which is equivalent to the fraction of the total 
height, and the parameter is the Rayleigh number. 
According to Fig. 3, the minimum temperature is 
located in either one of two regions ; on the axis or near 
the side toward the bottom. The shift from the first 
region to the second is sudden? and the points in the 
second region do not correspond exactly to the 
circulation center in that region. Figures 4 and 5 also 
show the Tmi. locations as a function of the Rayleigh 
number. As shown in these figures, the radial location is 
independent of the Rayleigh number below 104, while 
most of the axial changes occur in this low Rayleigh 
number range. As the Rayleigh number becomes 

0.5 
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I 0.3 
\ 

N 0.2 

0. I 

0.0 1 
0 I 

I 

I 

vertical mid-plane 

I 
1 bottom I I I I I 

I 00 01 0 2 0.3 0.4 

r/D 
FIG. 3. Minimum temperature locus inside a vertical cylinder. 

t Words such as ‘sudden’ and ‘slow’ which are usually 
associated with time are used here to describe the changes in 
the position of the minimum temperature with Rayleigh 
number. 

RCI 
FIG. 4. Radial location of the minimum temperature. 

greater than 104, the radial location moves quickly 
away from the center, then moves moderately while 
movement in the axial direction is slow. Intuitively, one 
might assume that the minimum temperature of a 
pseudosteady-state system is about zero (center 
temperature) and located close to the center. Figure 6 
clearly shows the discrepancy in that line of reasoning. 
As natural convection effects increase, the minimum 
temperature can be as much as 50% lower than the 
difference between wall and center. Since further 
increases in the Rayleigh number drive the Tmin location 
closer to the wall and the bottom, they increase the 
temperature gradient in that region which, in turn, 
causes T-& to rise. This is shown in Fig. 6 as the 
minimum of Tmin. In the case of cooling, these locations 
would be ‘hot spots’. Information about the magnitude 
and the location of hot spots is important in the design 
of catalytic reactors and the arrangement of electronic 
components. 

Volumetric mean temperature 
Figure 7 presents the volumetric mean temperature 

as function of the Rayleigh number. Starting from the 
conduction-dominated region, the mean temperature 
decreases monotonically to approx. 0.2 as the Rayleigh 
number increases. The mean temperature is most 
sensitive to the Rayleigh number changes between lo4 
and 10s. This is due to the creation of a large negative 
temperature region in this Rayleigh number range. In 
general, the wall-mean temperature difference is a good 

0.5 , I I 
_----- 0.5 

-I 

o.oI 
I o3 I 04 I 05 I o6 

Ra 
FIG. 5. Axial location of the minimum temperature. 
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-0.4 - 

-0 5 
l 03 

. .,’ 
1 “‘.““I _ *a- 

I o4 I o5 I o6 

Ra 
FIG. 6. Magnitude of the minimum temperature : T, = 0. 

characteristic temperature for heat transfer. According 
to this figure, the temperature difference in the 
convection region can easily be twice that in the 
conduction-dominated region. Natural convection 
causes both an increase in the temperaturedrivingforce 
and a decrease in the path length for heat transfer, i.e. 
the minimum temperature moves closer to the walls. 
Both effects increase the average gradient at the wall 
and, therefore, the rate of heat transfer. 

DISCUSSION 

During numerical calculations in this work, the low 
temperature range (usually between -0.2 and -0.4) 
became unstable as the Rayleigh number increased to 
about 10’. This is the transition region from laminar 
flow to weak turbulence, or chaotic thermal convection 
[7], The weak turbulence results in fluid mixing and an 
increase in the minimum temperature, this is shown in 
Fig. 6. In spite of the existence of a chaotic region in the 

0.7 
I H/D _-_--- (js 

-I 
-.-.- - 

0.2 - 

0.1 -4 
I o3 I o4 I 05 I o6 

RCl 
FIG. 7. Magnitude of the volumetric mean temperature: 

T, = 1, T, = 0. 

Table 2. Percentage error of the Nusselt 
number 

Ra lo2 lo4 6x lo4 

Calculation 0 1 2 
Experimental 0 8 5 

body of the cylinder, the temperature distribution at 
the boundary region is still well stratified, therefore the 
temperature gradient (which is essentially the local 
Nusselt number) can still be calculated accurately, and 
the heat transfer correlation of this work can be used up 
to the Rayleigh number of 10’. 

The vertical cylinder heat transfer results of Kee [4] 
were converted according to equation (16) to make 
them comparable. Table 2 lists the percentage 
difference in the Nusselt numbers at three Rayleigh 
numbers compared to that of Kee. Larger errors were 
observed in comparison to his experimental results, in 
which he assumed the inside wall temperature to be 
uniform and the same as the outside wall temperature. 
This assumption can cause a slightly lower Nusselt 
number. Actually, our results are between Kee’s 
calculations and experiments. 

The difference between Nu and Nu” was usually 
much less than 1% which indicates that the calculation 
scheme, the temperature gradient estimation, and the 
grid size were satisfactory. 

1. 

2. 

3. 

4. 

5. 

6. 
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DESCRIPTION DE LA CONVECTION THERMIQUE NATURELLE PSEUDO- 
STATIONNAIRE DANS UN CYLINDRE VERTICAL 

R&m&-L’expression du transfert thermique,la temp&ature minimale et la tempbature moyenne sont 

prtsenttespourlaconvectionnaturellepseudo-stationnaired'unfluidedans uncylindrevertical.LamCthode 
num6rique SIMPLER est utilisb dans le domaine : 425 c H/D < 2, Ra < 10’ et Pr = 7. Ce domaine va de la 
conduction B la turbulence faible. Le transfert thermique global pour le domaine est exprim6 par 

Nu = 0,519 Ra08Z55 

od la diffkrence de temp&rature pour les nombres de Rayleigh et de Nusselt est la temptrature du centre moins 
la tem&aturede la paroi interne. Des formules utilisant d’autres di!%encesde temp&ature sont p&sent&es et 
on donne une mtthode pour le calcul de la temp&ature moyenne, de la temp&rature minimale ou de la 

tempkrature du centre, en connaissant l'une quelconque d'entre elles. 

QUASISTATIONARE NATORLICHE KONVEKTION IN EINEM SENKRECHTEN 
ZYLINDER 

Zusammenfassung-Fiir den Fall des Wiirmeiibergangs bei quasistationiirer natiirlicher Konvektion an ein 
Fluid in einem senkrechten Zylinder werden die WBnneiibergangsbeziehung, die Minimal- und die 
Mitteltemperatur vorgestellt. Die numerische Methode nach SIMPLER wurde fiir Berechnungen im Bereich 
425 4 H/D -c 2, Ra c 10’ und Pr = ‘langewendet. Dieser Bereich schlieBt die Wirmeleitungsowieschwache 
Turbulenz mit ein. Es wurde herausgefunden, daD der mittlere WIrmeiibergang be.i natiirlicher Konvektion 
mit Nu = 0 519 * Ru~**~~ korreliert werden kann. Dabei erstreckt sich sowohl fiir die Nusselt- als such fiir die 
Rayleigh-ZHhl die TemperaturditTerenz zwischen der Rohrmitte und der inneren Wand. Beziehungen, die auf 
anderen Temperaturdiierenzen basieren, werden ebenfalls vorgestellt und erm6giichen ein Verfahren zur 
Berechnung der Mittel- und Minimaltemperatur oder dejenigen in der Rohrmitte bei Kenntnis einer dieser 

Temperaturen. 

IICEBflOCTAIjkIOHAPHAX ECTECTBEHHAR KOHBEKIJMIl BHYTPM BEPTklKAJIbHOTO 
IJIJJIHHAPA 

AHIIOT~UHR-_AJM nceenocTaunoHaptior0 ecTeCTne~HoKoHnexTna~or0 TennonepeHoca K ~~~K~cTII 

BHYTPU sepTAKanbHor0 minkiHnpa npennomeIibl cooT~omeHIia Ann paweTa Tennoo6MeHa,MmIaManb- 

HOI? Ii cpenHeZi TeMnepaTypbI. %cneHHbIii MeTon SIMPLER Iicnonb30aanca B nwanasose: C425 < 
HID ~2, Ra < 10’ N Pr= 7 N OT ~~ZUWMOB rec~oii rennonpoBonHocTH no cna6ofi Typ6yneHTHocTn. 

HatineHo,wo cpenHaii TennonepeHoc an51 npeo6nanamiii KoHaeKmm 0nacbIaaeTcK cnenyI.omaM COOT- 

HoIIIeHHeM: 

Nu = 0,510 RcI~=~, 

me KBK AJIK YHCJI3 HyCWIbTa,TaK &i &IIK 'IWCJIa P3JIeK npHHHMaJIaCb pa3IiOCTb TeMnepaTyp B ueHrpe Ii 

Ha BHyTpeHHeii nOBepXHOCTI4 CTeHKW. npHBeneHb1 TaKW(e BbIpa)KeHHK,nOJIyYeHHbIe&WI~pyrIiX pa3IIOC- 

Tefi TeMnepalyp, II p33,,360TaHa MeTOAUKa PX’ICTa Cpe$,Hefi, MHHWMa,IbHOk IUIH TeMnepaTypbI B 

I,eHTpeIIp‘IyCJIOBUU,4TOOAHaU3HIIXH3BeCTHa. 


